РАСЧЕТЫ СЖАТИЯ СФЕРИЧЕСКОЙ СЛОИСТОЙ СИСТЕМЫ УДАРНЫМИ ВОЛНАМИ С УЧЕТОМ ПЕРЕНОСА ТЕПЛОВОГО ИЗЛУЧЕНИЯ В РАЗЛИЧНЫХ ПРИБЛИЖЕНИЯХ

С.А. Грабовенская, В.В. Завьялов, А.А. Шестаков ФГУП «РФЯЦ-ВНИИТФ им. академ. Е.И. Забабахина», г.Снежинск

Одним из направлений работ при исследовании процессов имплозии на лазерных установках является математическое моделирование режимов с обострением – задач, допускающих неограниченные решения в течение конечного промежутка времени. Ранее такие режимы рассматривались для изучения поведения экстремальных решений в работе [1]. К ним относятся безударное сжатие в газовой динамике, задачи теплового взрыва, процессы кумуляции ударных волн (УВ) и др. [2], [3]. Моделирование совместной системы переноса теплового излучения с газодинамикой может существенно влиять на поведение решений таких задач, в частности, сделать неограниченные решения ограниченными, но с дельтаобразным поведением основных величин. Поэтому возникает интерес к процессам, близким к режимам с обострением, но с одновременным учетом переноса излучения и газодинамики.

Задача о сходящейся сферической УВ была впервые решена немецким ученым Годфридом Гудерлеем, работавшим в Лос-Аламосе в 1942 году [4], и независимо от него Л.Д. Ландау и К.П. Станюковичем в 1944 году [5]. В общей форме описание сферической УВ есть в книгах [6], [7]. В момент прихода УВ в центр происходит ее фокусировка и отражение от центра. При учете теплопереноса вблизи фокусировки сходящейся УВ растут температурные градиенты, поэтому теплопроводность и излучение становятся ведущими механизмами диссипации энергии. Задача о сходящейся сферической УВ с учетом лучистой теплопроводности была решена Е.И. Забабахиным и В.А. Симоненко в 1965 году [8], которые показали, что теплопроводность видоизменяет характер движения: вместо конечной плотности и бесконечной температуры возникает бесконечная плотность и конечная температура. За счет теплопроводности перед УВ появляется зона прогрева, в которой газ не только нагревается, но и начинает двигаться и уплотняться. Фронт этой зоны называют тепловым предвестником.

Неограниченную кумуляцию можно получить и другими способами. В работе [9] показано, что в слоистой системе из чередующихся легких и тяжелых плоских слоёв можно получить возрастание плотности и давления. Описание движения УВ в слоистой системе намного сложнее, чем в однородной среде, поэтому моделирование таких систем проводится, в основном, численными методами. В сферической слойке степень кумуляции значительно выше, чем в плоской, поскольку УВ усиливается за счет суммы двух факторов: сферичности и слоистости.

В работе [10] была предложена тестовая задача, моделирующая сжатие простейшей сферической системы, состоящей из двух веществ, с учетом переноса излучения в разных приближениях. Показано, что особенностью этой задачи является резкое возрастание плотности при сжатии ударными волнами вещества в центре сферы. При этом максимальная плотность достигается после прохождения третьей УВ. Такие режимы, когда средние плотности веществ вырастают на несколько порядков, по-видимому, также можно отнести к задачам с обострением. До выхода на стационарный режим основные газодинамические величины в данной задаче (температура, плотность, давление и скорости границ веществ) являются осциллирующими функциями. Возникающие под воздействием сильных ударных волн осцилляции всех величин очень резкие и для их качественного воспроизведения требуются достаточно прецизионные методы. Достоинством предложенной задачи является то, что в данной постановке все приближения переноса излучения дают близкие результаты по основным термодинамическим величинам, а при выходе на стационарный режим они имеют точные значения, одинаковые для всех приближений.

В работе [11] для тестирования многомерных программ, описывающих процессы радиационной газовой динамики (РГД), были рассмотрены задачи, моделирующие сжатие ударными волнами сферической слоистой системы, состоящей из нескольких веществ, при совместном счете лучистой теплопроводности и газодинамики. Особенностью этих задач является достижение максимальной плотности после прохождения второй или третьей ударных волн.

В данной работе приведено решение одной из таких задач в кинетической модели с небольшими изменениями в постановке и использованием шести приближений переноса излучения: лучистотеплопроводного (ЛТП), диффузионного, квазидиффузионного в параболической и гиперболической формах, Р1 и Р1/3. Целью работы является нахождение менее затратного по временным ресурсам ЭВМ приближения переноса излучения, позволяющего определять времена прихода ударных волн в центр сферы и максимальные значения газодинамических величин, близкие к кинетической модели.

1.СИСТЕМА УРАВНЕНИЙ ВРГД

При численном моделировании система уравнений ВРГД (высокотемпературной газовой динамики) [12] расщепляется по физическим процессам и на каждом шаге по времени моделируется в два этапа. На первом этапе решаются уравнения газовой динамики

$$\frac{d\rho}{dt} + \rho \nabla \cdot \mathbf{u} = 0,$$

$$\rho \frac{d\mathbf{u}}{dt} + \nabla P = 0,$$

$$\rho \frac{dE}{dt} + P \nabla \cdot \mathbf{u} = 0.$$

Здесь $t_{-время}$, $\rho_{-плотность}$, **u**_-вектор газодинамической скорости, $E(\rho, T)_{-}$

удельная внутренняя энергия, T – температура вещества, $P = p + p_r$ – полное давление, $p(\rho,T)$ – газодинамическое давление, $p_r = \frac{\sigma T_r^4}{3}$ – давление излучения, $T_r = \sqrt[4]{\int Id\Omega / c\sigma}$ – радиационная температура, σ – постоянная Стефана-Больцмана, c – скорость света, I – интенсивность излучения, Ω – единичный вектор направления полета

фотонов. Газодинамическое движение моделируется в эйлерово-лагранжевой системе координат по методике [13].

На втором этапе рассчитывается изменение внутренней энергии за счет лучистого теплообмена в различных приближениях.

Кинетическая модель имеет вид

$$\frac{\rho d}{c dt} \left(\frac{I}{\rho} \right) + \mathbf{\Omega} \nabla I + \left(\alpha_c + \alpha_s \right) I = \frac{\alpha_c}{4\pi} B + \frac{\alpha_s}{4\pi} U,$$
$$\rho \frac{dE}{dt} = \alpha_c \left(U - B \right).$$

здесь $\alpha_c(\rho,T)$ – коэффициент поглощения, $\alpha_s(\rho,T)$ – коэффициент рассеяния, $U(\mathbf{r},t) = \int I d\Omega$ – плотность энергии излучения, умноженная на скорость света c, \mathbf{r} – радиус-вектор, $B(T) = c\sigma T^4$.

Система переноса излучения дополняется начальными и граничными условиями

$$I(\mathbf{r}, \mathbf{\Omega}, t=0) = I^{0}(\mathbf{r}, \mathbf{\Omega}), I(\mathbf{r} \in \overline{\Gamma}, \mathbf{n} \cdot \mathbf{\Omega} < 0, t) = I^{-}(\mathbf{r} \in \overline{\Gamma}, \mathbf{\Omega}, t), T(\mathbf{r}, t=0) = T^{0}(\mathbf{r}),$$

где \mathbf{n} – внешняя нормаль к границе Γ расчетной области Γ .

Обозначим через $\mathbf{S}(\mathbf{r},t) = \int \Omega I d\Omega$ – вектор потока энергии излучения. Проинтегрировав уравнение переноса в декартовой системе координат по Ω с весами 1, Ω , получим систему уравнений

$$\frac{\rho d}{cdt} \left(\frac{U}{\rho} \right) + \nabla \cdot \mathbf{S} + \alpha_c U = \alpha_c B,$$
$$\frac{\rho \beta d}{cdt} \left(\frac{\mathbf{S}}{\rho} \right) + \nabla (\mathbf{D}U) + (\alpha_c + \alpha_s) \mathbf{S} = 0$$

 $\mathbf{D} = \{D_{ij}\}_{-}$ симметричный тензор квазидиффузионных коэффициентов и параметр $\beta_{,}$ которые определяют вид приближения:

$$\begin{split} D_{ij} &= U^{-1} \int \Omega_i \Omega_j I d\Omega \\ \beta &= 1, & - \text{квазидиффузионное (КД) приближение [14],} \\ D_{ij} &= U^{-1} \int \Omega_i \Omega_j I d\Omega \\ \beta &= 0, & - \text{параболическое КД приближение (ПКД) [15],} \\ \beta &= 1, & D_{ij} &= \delta_{ij} / 3 \\ \beta &= 1/3, & D_{ij} &= \delta_{ij} / 3 \\ \beta &= 0, & D_{ij} &= \delta_{ij} / 3 \\ - \text{ Р1 приближение [16],} \\ \beta &= 0, & D_{ij} &= \delta_{ij} / 3 \\ - \text{ р1/3 приближение [17],} \\ \beta &= 0, & D_{ij} &= \delta_{ij} / 3 \\ - \text{ диффузионное (Д) приближение [18],} \\ \delta^{ij} &- \text{ символ Кронекера, i,j=1 ÷ n, n - размерность пространства } R^{n}. \\ \text{ Соответствующие начальные и граничные условия имеют вид} \\ U(\mathbf{r}, t = 0) &= U^{0}(\mathbf{r}), \mathbf{S}(\mathbf{r}, t = 0) = \mathbf{S}^{0}(\mathbf{r}), T(\mathbf{r}, t = 0) = T^{0}(\mathbf{r}), \overline{\alpha}U - \overline{\beta}(\mathbf{n} \cdot \mathbf{S}) = \overline{\gamma}. \end{split}$$

{Здесь} $\overline{\alpha}, \overline{\beta}, \overline{\gamma}{-\text{параметры граничных условий, причем}} \overline{\alpha} \ge 0, \ \overline{\beta} \ge 0, \ \overline{\alpha} + \overline{\beta} > 0$.

Для уменьшения количества переменных, времени счета и объема занимаемой памяти ЭВМ при численном моделировании кинетического уравнения переноса применяют различные упрощающие предположения [12], позволяющие свести задачу к более простой. Например, если предположить линейную зависимость интенсивности излучения от направления полета частиц, то мы получаем Р1 приближение. Далее, предполагая между плотностью и потоком излучения зависимость в виде закона Фика, получаем диффузионное приближение. Считая, что справедливо приближенное равенство U = B (условие локального термодинамического равновесия), мы получаем приближение и приближение. В оптически прозрачных средах диффузионное приближение и приближение значения потока излучения, такие значения потока излучения,

поэтому их желательно считать с ограничением теплового потока предельно допустимым значением. В рассмотренной далее задаче значения теплового потока не превышают предельно допустимые значения из-за достаточной оптической плотности системы.

Р1 модель, в отличие от диффузионного и ЛТП приближений, сохраняет конечной скорость распространения фотонов, которая однако не равна скорости света. Это исправлено в Р1/3 приближении, предложенным в работе [17] путем введения множителя 1/3 перед производной потока по времени. Используя асимптотический анализ, Морел в работе [19] показал, что его характеристики схожи с Р1 приближением. Так как скорость распространения фотонов в Р1/3 приближении моделируется более правильно, в данной работе представляются результаты как в Р1, так и в Р1/3 приближениях.

Квазидиффузионное приближение учитывает кинетические эффекты за счет использования коэффициентов, являющимися дробно-линейными функционалами от решения, что делает его наиболее близким к кинетической модели.

Алгоритмы решения уравнения переноса излучения для моделей, использованных в данной статье, описаны в работах [20], [21]. Решение уравнения ЛТП приведено в [13].

2.ПОСТАНОВКА ЗАДАЧИ

Постановка задачи взята из работы [11] с изменением коэффициента поглощения в первой области. Шар радиусом $0 \le r \le R_2 = 0.6$ см состоит из 2 физических областей (таблица 1). Внутренняя область 1 ($0 \le r \le R_1 = 0.5$) состоит из вещества с плотностью $\rho_1 = 0.02$ г/см³, внешняя область 2 ($R_1 \le r \le R_2$) из вещества с плотностью $\rho_2 = 1$ г/см³. Уравнение состояния вещества $P = 0.54\rho T$ и $E = c_v T$ с постоянной теплоемкостью $c_v = 0.81$. Начальная температура является фоновой для всей системы $T^0 = 0.00001$ кэВ, начальные скорости $\mathbf{u} = 0$. На внешней границе задано давление в условных единицах (1 у.е.= 10^8 Бар) $P_{R_2} = 0.1$ у.е. и температура $T_{R_2} = 0.1$ кэВ. Коэффициент поглощения $\alpha_c = \frac{\rho}{5} \left[\left(1 + \frac{8.65}{\rho^{2/3}T^2} \right)^{3/2} - 1 \right]$, коэффициент рассеяния – по

вычисляется по формуле \Box , коэффициент рассеяния – по формуле $\alpha_s = \rho/5$.

Таблица 1. Состав системы

Номер области	1	2
Начальная плотность ρ^0 , г/см ³	0.02	1
Начальные радиусы $R_{1,2}$, см	0.5	0.6
Число ячеек разностной сетки	100x30	400x30

В таблице представлены параметры сетки, которая построена с соблюдением условия перепада масс ячеек по радиусу на границе областей не более чем на 1%. Сетка по углу в 30 интервалов достаточна вследствие сферической симметрии задачи. Общее число ячеек сетки взято из условия сходимости разностного решения с точностью до 1%.

До выхода на стационарный режим все величины являются осциллирующими функциями и при $t \to \infty$ решение задачи выходит на постоянные значения с плотностью $\rho_{st} \approx 1.851_{\Gamma/cm^3}$ и радиусом $R_{2,st} \approx 0.37_{cm}$.

3. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

Расчеты проводились по двумерной программе в осесимметричной геометрии до времени 0.13 мкс. За это время средние плотность и температура веществ достигают максимумов в первой области. Далее с течением времени происходит уменьшение значений плотности и температуры в виде пульсаций.

Константа сходимости итераций по температуре полагалась равной 10⁻⁵, квадратура по направлениям полета частиц – ES₁₆. Шаг по времени варьировался, исходя из поведения решения, но не превышал 1 пс.

Максимальные значения основных газодинамических величин (температуры, давления и плотности) достигаются в центре сферы. Результаты расчетов, а именно, максимальные значения средней температуры T_{max} и средней плотности р_{max} в области 1, времена счета t_{ШП} на ЭВМ, времена прихода тепловой t_{ТВ} и ударной волн t_{УВ} в центр сферы и их отличия Δ в процентах от результатов в кинетической модели приведены в таблице 2.

Средняя плотность и температура вещества вычисляются по формулам $\rho = \sum_{i} \rho_{i} V_{i} / \sum_{i} V_{i},$ $T = \sum_{i} T_{i} M_{i} / \sum_{i} M_{i}.$ $T = \sum_{i} T_{i} M_{i} / \sum_{i} M_{i}$, где ρ_{i}, T_{i} – плотность и температура в центре ячейки с индексом i,

					1				
Прибли жение	$T_{\max}^{1},_{K\ni B}$	ΔT_{max} ,%	$\rho^{1}_{\max,\Gamma/CM^{3}}$	$\Delta \rho_{max}, \%$	t _{TB} ,10 ⁻⁷ c	$\Delta t_{TB},\%$	t ув,10 ⁻⁷ с	Δt yB,%	tцп,час
Κ	0.410360	0	89.046800	0	0.679648	0	0.828706	0	24
КД	0.412479	0.52	88.184945	0.97	0.685948	0.93	0.825207	0.42	11
ПКД	0.412484	0.52	88.203390	0.95	0.685958	0.93	0.825262	0.42	11
Д	0.411348	0.24	88.701323	0.39	0.685952	0.93	0.825364	0.40	2
P1	0.411343	0.24	88.687094	0.40	0.685947	0.92	0.825369	0.40	2
P1/3	0.411345	0.24	88.696076	0.39	0.685950	0.93	0.825375	0.40	2
ЛТП	0.402946	1.8	80.571372	9.52	0.661747	2.63	0.821422	0.99	0.5

 V_i, M_i – объем и масса ячейки с индексом і.

Из таблицы видно, что все приближения, кроме ЛПП, показали достаточно хорошее
согласие (менее 1%) с кинетической моделью по рассматриваемым величинам. Наиболее
затратной по времени счета является кинетическая модель, хотя в ней применяется
распараллеливание по направлениям полета фотонов. Самым экономичным является ЛТП
приближение, однако оно дает наибольшее отличие от кинетической модели. Выход на
стационарный режим через 10 мкс требует на два порядка больше времени ЭВМ, поэтому
время расчётов подобных задач в кинетической модели могут быть неприемлемо
большими. Следовательно, рационально использовать более экономичные приближенные
модели.

Таблица 2. Результаты расчетов

Поскольку для анализируемых далее результатов используемые модели переноса за исключением ЛТП дают визуально неразличимые графики, то для сравнения на рисунках будут представлены только приближения ЛТП и КД.

На рис. 1,2 приведены зависимости от времени средних по областям плотности и температуры веществ.

Рис.1. Средняя температура в 1 области: штрих-пунктирная – ЛТП, сплошная – КД; 2 область: точечная – ЛТП, штриховая – КД.

Из рис. 1 видно, что приближения ЛТП и КД дают хорошее согласие по средним температурам на протяжении всего расчета и наибольшее отличие наблюдается при прогреве первой области, где разница между приближениями ЛТП и КД на момент времени 0.075 мкс достигает 10%. Однако ко времени 0.113 мкс достижения максимума средней температуры разница уменьшается до 1.8 %.

Рис.2. Средняя плотность в 1 области: штрих-пунктирная – ЛТП, сплошная – КД; 2 область: точечная – ЛТП, штриховая – КД.

Отметим, что приближения ЛТП и КД дают хорошее согласие по средним плотностям на протяжении всего расчета и наибольшее отличие наблюдается в момент максимального сжатия первой области, где разница между приближениями ЛТП и КД на момент времени 0.117 мкс достигает примерно 9%.

Как показано в работе [11] рассматриваемая система является оптически плотной, поэтому средние по областям температуры вещества и средние радиационные температуры в разных моделях не отличаются на протяжении всего времени счета. Однако в отдельных точках, в частности, в центре сферы они могут отличаться очень сильно, то есть происходит «отрыв» температур. «Отрыв» температур в моменты прихода ударных волн в центр 0.0832 мкс и 0.1125 мкс представлен на рис. 3.

Рис.3. Температура вещества и радиационная температура в центре сферы для КД приближения: точечная – температура вещества, сплошная – радиационная температура.

Из рис. 3 следует, что температура вещества практически мгновенно за время 0.4 нс вырастает на первом пике в центральной точке более, чем в 10 раз с $T \approx 0.3$ кэВ до $T \approx 3.9$ кэВ и превышает радиационную температуру $T_r \approx 0.65$ кэВ более, чем в 6 раз.

Для анализа поведения УВ и ТВ на рис. 4-6 приведены профили основных термодинамических величин на 3 момента времени: момент подхода ТВ к контактному разрыву (КР) 0.025 мкс, момент подхода ТВ к центру системы 0.065 мкс и момент после отражения УВ от центра 0.088 мкс.

На рис. 4 приведены зависимости от расстояния до центра системы $R = \sqrt{r^2 + z^2}$ величин (профили) Т, Р, р в логарифмическом масштабе на момент времени близкий к приходу ТВ к контактному разрыву.

Видно, что к моменту подхода ТВ к КР (на рис. 4 - вертикальная штрих-пунктирная линия при $R\approx0.4987$ см) можно выделить четыре участка: зона невозмущенного холодного вещества (0<R<0.498 см, $\rho=0.02$ г/см³, T=10⁻⁵ кэВ, P=10⁻⁷ у.е.), зона предвестника перед УВ (0.498<R<0.506 см, 0.02< ρ <1 г/см³, T \approx 10⁻⁵ кэВ, P \approx 10⁻⁵ у.е.), зона УВ (R \approx 0.506 см) и прогретая зона за УВ (0.506<R<0.535 см, $\rho\approx$ 4 г/см³, 0.05<T<0.1 кэВ, P \approx 0.1 у.е.). Фронт ТВ совпадает с фронтом УВ.

На рис. 5 приведены профили величин Т, Р, ρ в логарифмическом масштабе на момент времени близкий к приходу ТВ в центр.

Рис. 5. Профили Т, Р, р на момент времени 0.065 мкс в КД приближении: сплошная – Т, точечная – Р, штриховая – р.

На рис. 5 показано, что к моменту времени близкому к приходу ТВ в центр можно выделить 6 участков: зона невозмущенного холодного вещества (0 <R< 0.07 см, ρ =0.02 г/см³, T=10⁻⁵ кэВ, P=10⁻⁷ у.е.), зона предвестника перед УВ, где температура превышает граничное значение (0.07<R<0.21 см, ρ =0.02 г/см³, T≈0.15 кэВ, P≈10⁻³ у.е.), зона УВ (R≈0.21 см), зона волны разрежения (ВР) при R≈0.3 см, зона между УВ и ВР (0.21<R<0.3 см), зона перед ВР (0.3<R<0.41 см). Фронт ТВ опережает фронт УВ примерно на 0.14 см. Рост температуры выше граничного значения в зоне между тепловыми волнами (0.07<R<0.3 см) объясняется переходом части кинетической энергии в тепловую за счет сжатия вещества.

На рис. 6 приведены профили величин Т, Р, р в логарифмическом масштабе после отражения УВ от центра.

Рис. 6. Профили Т, Р, р на момент времени 0.088 мкс в КД приближении: сплошная – Т, точечная – Р, штриховая – р.

На рис. 6 демонстрируется, что после отражения УВ от центра можно выделить три участка: зона после прохождения отраженной УВ (0<R<0.025 см), зона от отраженной ТВ до отраженной УВ (0.025<R<0.185 см), зона перед отраженной ТВ (0.185<R<0.310 см). К этому моменту времени система полностью прогрелась, фронт отраженной ТВ опережает фронт отраженной УВ примерно на 0.17 см. Вторичные волны нагрева и сжатия во второй области создают немонотонную картину величин Т, Р, ρ в третьей зоне.

ЗАКЛЮЧЕНИЕ

По проведенным расчетам можно сделать следующие выводы:

- 1. Средние по веществам температуры и плотности совпадают во всех моделях с точностью до 1%, за исключением ЛТП. В момент максимального сжатия отличие средней плотности в области 1 в приближении ЛТП достигает 9.5%, максимальной средней температуры 1.8 %.
- 2. Эффект «отрыва» температур наблюдается только в точках максимального сжатия во всех моделях, кроме ЛТП, где он невозможен. Температура вещества в точках максимального сжатия может превышать радиационную температуру более, чем в 6 раз.

- 3. Диапазон времени прихода ТВ по разным моделях, кроме ЛТП, в центр системы достаточно небольшой, примерно 0.6 нс, по времени прихода УВ примерно 0.4 нс. В приближении ЛТП отличие времени прихода ТВ от кинетической модели примерно 2 нс, по времени прихода УВ примерно 0.7 нс.
- 4. К моменту подхода УВ к КР и к центру системы можно выделить зону предвестника.
- 5. Хотя в сферических слойках степень кумуляции может быть значительно выше, чем в плоских, учет излучения в данной задаче дает конечную плотность и температуру в момент фокусировки, что подтверждается расчетами в различных моделях.
- 6. До момента фокусировки в центре системы перед УВ в области 1 за счет излучения появляется зона прогрева, в которой вещество нагревается до температуры выше граничной. В момент фокусировки в центре системы температура вещества вырастает более, чем в 10 раз.
- 7. В данной задаче время счета в КД и ПКД приближениях примерно в два раза меньше времени счета в кинетической модели (с учетом распараллеливания по направлениям), в Д, Р1 и Р1/3 приближениях – в 12 раз меньше, в ЛТП приближении – в 48 раз меньше.
- 8. Совпадение результатов в кинетической модели и Д приближении показывает достаточно хорошую точность кинетической схемы TVDR [20] повышенного порядка аппроксимации, поскольку в Д приближении используется схема второго порядка аппроксимации по пространству [21]. Монотонная St схема первого порядка аппроксимации для кинетической модели дает отличие по времени прихода TB в центр системы 26%.

Рассмотренная задача может быть использована для исследования процессов сжатия веществ ударными волнами и тестирования методик ВРГД с учетом переноса теплового излучения в различных приближениях.

СПИСОК ЛИТЕРАТУРЫ

2 Даниленко В.В. Взрыв: физика, техника, технология. М.: Энергоатомиздат, 2010, 784 с.

4 Guderley G. Strake kugelige und zylindrische Verdichtutungsstosse in der Nane des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrtforschung // 1942, B.19, Lfg 9, P.302–312.

¹ Самарский А.А., Галактионов В.А., Курдюмов В.П., Михайлов В.П. Режимы с обострением в задачах для квазилинейных параболических уравнений. М.: Наука, 1987, 477 с.

³ Сысоев Н.Н., Селиванов В.В., Хахалин А.В. Физика горения и взрыва. М.: изд. МГУ, 2018, 237 с.

⁵ Ландау Л.Д., Станюкович К.П. Об изучении детонации конденсированных ВВ. //ДАН СССР, 1945, Т.46, №9, С.399–402.

⁶ Станюкович К.П. Неустановившиеся движения сплошной среды. М.: Гостехиздат, 1955, 804 с.

⁷ Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966. 686 с.

⁸ Забабахин Е.И., Симоненко В.А. Сходящаяся ударная волна в теплопроводном газе // ПММ, 1965, Т.29, Вып.2, С.334–336.

⁹ Забабахин Е.И., Забабахин И.Е. Явления неограниченной кумуляции. М.: Наука, 1988, 173с. 10 Шестаков А.А. Об одной тестовой задаче сжатия слоистой системы с учетом переноса излучения в различных приближениях. ВАНТ, 2017, Вып.4, С.25–31.

¹¹ Шестаков А.А. Тестовые задачи на сжатие сферических слоистых систем ударными волнами // Математическое моделирование, 2020, Т.32, №12, С.29–42.

¹² Четверушкин Б.Н. Математическое моделирование задач динамики излучающего газа. М.: Наука, 1985, 304 с.

13 Бисярин А.Ю., Грибов В.М., Зубов А.Д., Неуважаев В.Е., Первиненко Н.В., Фролов В.Д. Комплекс ТИГР для расчета двумерных задач математической физики // ВАНТ, Серия «Математическое моделирование физических процессов», 1984, Вып.3, С.34–41.

14 Гольдин. В.Я. Квазидиффузионный метод решения кинетического уравнения // ЖВМ и МФ, 1964, Т.4, №6, С.1078–1087.

15 Долголева. Г.В. Методика расчета движения двухтемпературного излучающего газа (СНД) // ВАНТ, Серия «Математическое моделирование физических процессов», 1983, Вып.2(13), С.29–33.

16 Jeans J.H. The equations of radiative transfer of energy // Astron. Soc., 1917, V.78, P.28–36.

17 Gordon L. Olson, Lawrence H. Auer, Michael L. Hall. Diffusion, P1 , and other approximate forms of radiation transport // J. Quantitative Spectroscopy and Radiative Transfer, 2000, V.64, P.619–634.

18 Белл Д., Глесстон С. Теория ядерных реакторов. М., Атомиздат, 1974, 494 с.

19 G.E. Morel. Asymptotic accuracy of diffusion, P_1 , and flux-limited diffusion theories in the equilibrium-diffusion limit // J. Quantitative Spectroscopy and Radiative Transfer, 2000, V.65, P. 769–778.

20 Гаджиев А.Д., Завьялов В.В., Шестаков А.А. Применение TVD подхода к DSn методу решения уравнения переноса теплового излучения в осесимметричной RZ геометрии // ВАНТ, серия «Математическое моделирование физических процессов», 2010, Вып.2, С.30–39.

21 Грабовенская С.А., Завьялов В.В., Шестаков А.А. Конечно-объемная схема ГРОМ для решения переноса излучения квазидиффузионным методом // ВАНТ, серия «Математическое моделирование физических процессов», 2014, Вып.3, С.47–58.